This guide explains how to execute a basic Sensor Storage performance evaluation based on a previously selected VM template as described here.
The following guide shows the evaluation scenario execution using the web interface or curl via the shell.
Web interface
-
Choose one of the two available UIs
-
Click on Try Out
-
Provide these parameter about details of your evaluation run:
#the following parameters will be used to create the result folder structure scenarioType: SENSORSTORAGE cloud: <OPENSTACK/EC2> dbmsType: <CASSANDRA/COUCHBASE> dbmsConfiguration: short name for the applied config, e.g. 3-nodes_weakConsistency #the follwoing parameters will be used to control the evaluation execution runs: <1-n> the number of evaluation execution for the specified scenario cleanUp: <true/false> specifies the deletion of each DBMS VM after an executed scenario (true is recommended, false only for debugging)
Just copy the JSON into the body and replace the the TODO
values of idCloud, idImage, idHardware, idLocation
with the values of the previously fetched VM template.
Add the public IPs of the deployed workload-API instances for workloadInstances
Hit the button Execute and grab a
Shell
- Use the following call, change the first 8 lines according to your cloud.
RESOURCETYPE=VM IDCLOUD=1 IDIMAGE=97 IDHARDWARE=112 IDLOCATION=122 SCENARIO_TYPE=SENSORSTORAGE CLOUD=OPENSTACK DBMS_TYPE=CASSANDRA DBMS_CONFIG_NAME=some_random_name RUNS=1 CLEANUP=false MOWGLI_IP=x.x.x.x
curl -X POST "http://$MOWGLI_IP:8282/v1/scenario/sensorStorageCluster?scenarioType=$SCENARIO_TYPE&cloud=$CLOUD&dbmsType=$DBMS_TYPE&dbmsConfiguration=$DBMS_CONFIG_NAME&runs=$RUNS&cleanUp=$CLEANUP" -H "accept: application/json" -H "Content-Type: application/json" -d "{ \"workloadNetwork\": { \"type\": \"PRIVATE\" }, \"dbmsNetwork\": { \"type\": \"PRIVATE\" }, \"dbmsCluster\": { \"type\": \"CASSANDRA\", \"databaseDataComponent\": [ { \"instances\": 2, \"resource\": { \"resourceType\": \"$RESOURCETYPE\", \"idCloud\": $IDCLOUD, \"idImage\": $IDIMAGE, \"idHardware\": $IDHARDWARE, \"idLocation\": $IDLOCATION }, \"customConfiguration\": [ ], \"name\": \"DATA\", \"nodeConfiguration\": { \"dataMemory\": { \"envName\": \"DATAMEMORY\", \"envValue\": 0 }, \"indexMemory\": { \"envName\": \"INDEXMEMORY\", \"envValue\": 0 } } } ], \"databaseSeedComponent\": [ { \"instances\": 1, \"resource\": { \"resourceType\": \"$RESOURCETYPE\", \"idCloud\": $IDCLOUD, \"idImage\": $IDIMAGE, \"idHardware\": $IDHARDWARE, \"idLocation\": $IDLOCATION }, \"customConfiguration\": [ ], \"name\": \"SEED\", \"replicationFactor\": { \"envName\": \"REPLICATIONFACTOR\", \"envValue\": 3 }, \"nodeConfiguration\": { \"dataMemory\": { \"envName\": \"DATAMEMORY\", \"envValue\": 1500 }, \"indexMemory\": { \"envName\": \"INDEXMEMORY\", \"envValue\": 500 } } } ], \"databaseManagementComponent\": [ ] }, \"workload\": { \"dbEndpoints\": [ ], \"measurementConfig\": { \"interval\": 10, \"measurementType\": \"NONE\" }, \"workloadConfig\": { \"workloadType\": \"LOAD\", \"workloadClass\": \"com.yahoo.ycsb.workloads.CoreWorkload\", \"maxExecutionTime\": 1800, \"threadCount\": 16, \"recordCount\": 4000000, \"insertStart\": 0, \"insertCount\": 0, \"operations\": 1000, \"targetOps\": 0, \"fieldCount\": 10, \"fieldLength\": 500, \"readAllFileds\": true, \"readModifyWriteProportion\": 0, \"requestdistribution\": \"UNIFORM\", \"scanLengthDistribution\": \"UNIFORM\", \"insertOrder\": \"ORDERED\", \"readProportion\": 0.0, \"updateProportion\": 0.0, \"insertProportion\": 1.0, \"scanProportion\": 0, \"maxScanLength\": 1000, \"coreWorkloadInsertionRetryLimit\": 3, \"coreWorkloadInsertionRetryInterval\": 3 }, \"databaseConfig\": { \"databaseBinding\": \"CASSANDRA2\", \"endpointParameterName\": \"hosts\", \"tableParameterName\": \"cassandra.keyspace\", \"tableName\": \"ycsb\", \"configPorperties\": [ { \"name\": \"cassandra.writeconsistencylevel\", \"value\": \"ONE\" } ] } }}"
- The output signalizes the successful run (after several minutes):
{ "code": 4, "type": "ok", "message": "Sensor Storage Cluster evaluation finished!" }
After evaluation start
Now the execution of the evaluation is started and you will see the VMs coming up in your cloud dashboard. In addition you can follow the logs of the evaluation via portainer: login via http://MOWGLI_HOST:9001/#/auth with the default credentials user: admin
and password mowgli19
Check the logs of the evaluation-orchestrator container and follow the progress of the evaluation.
You can also check the resource consumption via the Chronograf dashboard (if port 8888 is exposed):
After a successful execution you will find the results under:
/opt/evaluation-results/sensorstorage/CLOUD/DBMS/CONFIGURATION
Feel free to run multiple evaluation scenarios (in case you have enough EC2 credits
instances: X (only modify the number of databaseDataComponent!)
replicationfactor: 1-numberOfNodes
maxExecutionTime: 60-3600 (unit seconds)
recordCount: 10000 - n (make sure your VM have enough disk space, 4000000 require around 60GB of disk per Cassandra node)
fieldCount: 10 (each field is 500 bytes)TODO: explain the mowgli-default security group in openstack which might need some manual adjustments
Plotting
In order to generate plots to visualize the results you can use the processing call http://MOWGLI_IP:8282/#/plotting/processingBoxplotPost
You need to specify a plot name and a map of absolute evaluation result folders and labels (not more than 5 characters) .
Example:
plotName: icpe
[
{
"resultFolder": "/opt/evaluation-results/sensorstorage/ec2/cassandra/myConfig1",
"label": "conf1"
},
{
"resultFolder": "/opt/evaluation-results/sensorstorage/ec2/cassandra/myConfig2",
"label": "conf2"
},
{
"resultFolder": "/opt/evaluation-results/sensorstorage/ec2/cassandra/myConfig3",
"label": "conf3"
}
]
You will find the plot under /opt/evaluation-results/sensorstorage/plotName.pdf